
Aut
ho

r's
   

pe
rs

on
al

   
co

py

Control Engineering Practice 15 (2007) 1001–1011

Application of a distributed large basin runoff model
in the Great Lakes basin

Chansheng Hea,b,�, Thomas E. Croley IIc

aDepartment of Geography, Western Michigan University, Kalamazoo, MI 49008, USA
bCold and Arid Regions Environmental and Engineering Research Institute, The Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China

cGreat Lakes Environmental Research Laboratory, NOAA, Ann Arbor, Michigan 48105, USA

Received 16 May 2005; accepted 29 January 2007

Available online 19 March 2007

Abstract

This paper analyzes the application of a spatially distributed large basin runoff model (DLBRM) in the Great Lakes Basin of the

United Stats and Canada and discusses four essential components of operational hydrologic model development: model structure, model

input, model calibration, and Geographical Information System (GIS)-model interface. The results indicate that large scale operational

hydrologic models that are based on mass continuity equations and include land surface, soil zones, and groundwater components

require fewer parameters, are less data demanding, and are particularly suitable for solving water resources problems over large spatial

and temporal scales than many other models. Use of GIS-model interfaces is essential for utilizing the existing multiple digital databases

in defining model input and in facilitating model implementation and applicability.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Simulation models are useful tools in hydrologic
research (e.g. research hypothesis testing and understand-
ing of hydrologic processes), water resources planning (e.g.
floodplain assessment and ecosystem protection), and
management (e.g. water resource allocation and soil
erosion control) (Castelletti, de Rigo, Rizzoli, Soncini-
Sessa, & Weber, 2006; Duviella, Chiron, Charbonnaud, &
Hurand, 2007). With rapid advances in the availability of
digital databases and computing technology, numerous
hydrologic models have been developed during the past
three decades. These models can be generally grouped
subjectively into three types: empirical/statistical (input–
output or black-box), physically based, and conceptual.
Empirical/statistical models seek to represent hydrologic
system response by extracting information from existing

databases (an input–output description of the phenomen-
on) without considering any of the physical processes
involved (Bras, 1990; Kokkonen & Jakeman, 2001;
Merritt, Letcher, & Jakeman, 2003). Such models are
simple, less data demanding, and are particularly useful for
understanding hydrologic responses on a spatially lumped
and/or temporally coarse resolution (Merritt et al., 2003).
Physically based models use the conservation of mass

and momentum equations to describe hydrologic processes
of a watershed, e.g. the model by Freeze (1972), the
Système Hydrologique Europèen (SHE) model, and the
THALES model (Beven, 2000). Such models exclusively
describe all the important rainfall runoff components and
processes by a set of differential equations. Solving those
equations requires a huge amount of computing power and
quite detailed databases for specifications of many para-
meter values over each of the elements in the solution
domain (Beven, 2000; Merritt et al., 2003).
Conceptual models describe all of the component hydro-

logic processes as a system of interconnected storages that are
recharged and depleted in accordance with mass continuity
equations, without trying to be exact representations of
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physical reality (Bras, 1990; Beven, 2000; Kokkonen &
Jakeman, 2001; Croley & He, 2005). These models use a set
of distribution functions (e.g., statistical, simple functional
forms, unit hydrographs) to represent runoff generation
processes, rather than full process descriptions, across the
study watershed (Beven, 2000). These models are able to
reflect the hypothesis about the processes governing system
behavior (Merritt et al., 2003). Examples of such models
include the Stanford Watershed Model (Crawford & Linsley,
1966), Mike-11 (Danish Hydraulic Institute, 1990), the
Hydrologic Simulation Program in FORTRAN (Bicknell,
Imhoff, Kittle, Donigian, & Johansen, 1996), and the large
basin runoff model (LBRM) (Croley, 2002).

Traditionally, empirical/statistical and conceptual hy-
drologic models have treated input parameters as lumped
over the entire study watershed and ignored spatial
variability of hydrologic processes. While still appropriate
for simulating hydrologic processes and outputs at the
watershed outlet, lumped models ignore the spatial
variability of watershed processes (Merritt et al., 2003).
With fast development in digital databases and computing
technology and increasing requirements for knowledge of
distribution of water and material transport, distributed
models (both physically based and conceptual) have been
increasingly applied to understand the spatial and temporal
variations of watershed processes and outputs (Merritt
et al., 2003). Distributed, physically based models such as
SHE are primarily designed to simulate hydrologic
processes in great detail at the micro scale (usually
o102 km2) and require multiple massive amounts of data
to compute spatial and temporal distributions of energy
and water balances in the soil–plant–atmosphere system.
Such detailed input data are often expensive and difficult to
collect over large watersheds (say 103–104 km2). As a large
watershed may be discretized into thousands of grid cells,
this type of model requires much computational power,
challenging even with current computational technology
(Bras, 1990; Beven, 2000; Kokkonen & Jakeman, 2001;
Croley & He, 2005). Also, with many different parameters
involved for each cell, parameter calibration becomes
extremely difficult.

Facing the tradeoff between the representation of
hydrologic processes and the availability of input data,
distributed conceptual models have been developed to
predict hydrologic phenomena (e.g. forecasting lake level
fluctuations or estimating surface runoff) over a large
geographic area (usually 4103–104 km2) at long time scales
(typically for use over monthly, annual, or longer time
scales at a daily interval) (Croley & He, 2005). Such models
include the Areal, Nonpoint Source Watershed Environ-
ment Response Simulation (ANSWERS) (Beasley, Hug-
gins, & Monke, 1980), the identification of hydrographs
and components from rainfall, evaporation and streamflow
data (IHACRES) (Jakeman & Hornberger, 1993), the
US Geological Survey’s Precipitation-Runoff Modeling
System (PRMS) (Leavesley & Stannard, 1995), and
the variable infiltration capacity (VIC) model (Liang,

Lettenmaier, Wood, & Burgs, 1994). Implementations of
such models are often constrained by limited data
availability, computational requirements, and model ap-
plication costs over larger areas (Croley & He, 2005). While
it is essential for them to be able to simulate spatial
distributions of hydrologic processes, large-scale hydro-
logic operational models (models that are used to predict
hydrologic phenomena regularly and routinely over a large
geographic area) must have few parameters, use easily
accessible multiple digital databases, and be easy to use in
order to support water resources applications (e.g. water
supplies, water quality management, navigation, and
irrigation) over large areas under a wide range of climates
(Rango & Shalaby, 1998).
This paper describes application of a spatially distrib-

uted, two-dimensional, conceptual model that is based on
the equations of conservation of mass for runoff generation
for supporting hydrologic applications over large water-
sheds in the Laurentian Great Lakes Basin. It first reviews
recent developments in hydrologic modeling and then
discusses four essential components: model structure,
model input, model calibration, and geographical informa-
tion system (GIS)-model interface, in the development and
implementation of large scale hydrologic models. Finally, it
describes the application of those components in the
application of the two-dimensional distributed large basin
runoff model (DLBRM) to the Great Lakes watersheds to
demonstrate incorporation of these issues in the model
development process.

2. Recent developments in operational hydrologic modeling

Significant progress has been made in hydrologic
modeling during the past three decades. The following
sections give a brief review on recent developments in
model input, model structure, model calibration, and GIS-
model interface for large operational hydrologic modeling.

2.1. Utilization of multiple GIS and remote sensing

databases

Rapid advances in remote sensing, GIS, digital data-
bases, and computing technology during the past three
decades have provided enormous opportunities for the
hydrologic research community. For example, newly
launched satellites, such as the Earth Observing System
(EOS) PM-1, RADARSAT (space borne radar), LAND-
SAT 7 Enhanced Thematic Mapper (TM) Plus, Space
Imaging, Inc’s 1m resolution of the IKONOS satellite, and
others, enable the extraction of hydrologic parameters (e.g.
areal estimates of precipitation, snow water equivalent and
snow cover extent, vegetative cover, surface temperature,
surface albedo, and incoming solar radiation, soil moisture,
etc) over multiple temporal and spatial scales. Digital
Elevation Model (DEM) databases are widely used for
deriving slope, aspect, drainage network, and flow direc-
tion for a watershed (Hornberger & Boyer, 1995). Soil
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databases such as the State Soil Geographic Data Base
(STATSGO) from the US Department of Agriculture
Natural Resource Conservation Service (NRCS) (1994)
enable the incorporation of spatial variation of soil
characteristics into hydrologic models (He, Riggs, & Kang,
1993; He, Shi, Yang, & Agosti, 2001). Land cover
databases allow the derivation of land use/cover related
parameters such as leaf area index, zero plane displacement
height and Manning’s coefficient values to hydrologic
models.

While availability of a large number of digital databases
makes extraction of some model input variables (e.g. land
cover) possible over large areas, obtaining certain input
variables for operational hydrologic models, especially for
spatially distributed models, remains a challenge. For
example, precipitation is a key parameter in rainfall-runoff
modeling. Estimates of the spatial distribution of pre-
cipitation are still inadequate due to a lack of spatial and
temporal coverage of satellites and rain gauge stations,
particularly in rural areas. Methods for estimating
precipitation rates, such as cloud indexing, thresh-holding,
and life history methods, by satellite remote sensing are still
at an experimental stage (Engman, 1995). Microwave and
geosynchronous orbiting satellites such as Geostationary
Operational Environmental Satellite (GOES) can only
provide limited types of observations (Engman & Gurney,
1991; Engman, 1995). Ground-based radar is currently
limited to a measurement circle with a radius up to about
100 km and its distribution is mainly limited to densely
populated areas (Engman & Gurney, 1991; Engman, 1995).
Estimates of precipitation from those radar stations still
need to be calibrated against measurements from nearby
rain gauges. Application of satellite remote sensing is still
at a research stage for estimating soil moisture and
determining sediment load. No remote sensing methods
have been found to measure streamflow in river basins, or
infiltration of precipitation into the soil, deep soil moisture
or groundwater, or the levels of chemical pollutants in
water bodies (Rango, 1994). Thus, operational hydrologic
models for large basins must still rely on inadequately
distributed rain gauges for estimates of precipitation.
In addition, unlike precipitation networks, there are
virtually no systematic measurements of solar radiation
and surface temperature throughout the US Although
algorithms are available to derive solar radiation and
surface temperature from visible and thermal bands of
satellites such as GOES, LANDSAT TM, and Advanced
Very High Resolution Radiometer (AVHRR) (Hall,
Huemmerich, Goetz, Sellers, & Nickeson, 1992; Lindsey
& Farnsworth, 1997), application of those algorithms often
requires knowledge and skills of image processing and
interpretation. Therefore, development of large-scale op-
erational hydrologic models need to take advantage of
opportunities provided by remote sensing and GIS
databases, and at the same time, to consider limitations
of data availability in mathematical formulation and
parameter specifications.

2.2. Structure of operational models

Large-scale operational models represent all the compo-
nent hydrologic processes as a system of interconnected
storages with mass continuity equations. Model compo-
nents should include land surface, soil zones, and ground-
water to produce realistic estimates of rainfall-***runoff
generation (Koren, Finnerty, Schaake, Smith, Seo, Duan,
et al., 1999; Martinez, Dunchon, & Crosson, 2001).
Variable-source-area concepts (runoff from a dynamically
changing surface area) should be used in computing
infiltration and saturation runoff as the variable-source
models give a better representation of hydrologic processes
and produce better estimates of overland flow and are less
scale dependent (Quinn, Beven, & Culf, 1995; Abdulla,
Lettenmaier, Wood, & Smith, 1996; Koren et al., 1999;
Beven, 2000; Valeo & Moin, 2001). Soil layers and
groundwater should be included in the model structure as
water budget is very sensitive to the number of layers in the
soil profile and omission of the subsurface-groundwater
component in a runoff model can lead to an increase in
model scale dependency (Koren et al., 1999; Martinez
et al., 2001). For modeling soil water storage, a single layer
in both the upper and bottom soil zones is adequate
(Martinez et al., 2001).
The Penman-Monteith (PM) method and the comple-

mentary relationship (CR) methods have both been widely
used for estimating regional evapotranspiration (ET) over
long periods of time. The PM method assumes that actual
ET does not affect potential ET (the ET and potential ET
are ‘‘independent’’). It links the effects of vegetation to the
ET process through aerodynamic and canopy resistance
terms and may be more appropriate for small areas where
detailed databases are available. The CR concept states
that as water availability becomes limited then actual ET
falls below its potential, and an excess amount of energy
becomes available in the form of sensible heat and/or long-
wave back radiation that increases the temperature and
humidity gradients of the over passing air and leads to an
increase in potential ET equal in magnitude to the decrease
in ET. If water availability is increased, the reverse occurs,
and ET increases as potential ET decreases. Thus, potential
ET can no longer be regarded as an independent causal
factor. Instead it is predicated upon the prevailing
conditions of moisture availability (Hobbins, Ramirez,
Brown, & Claessens, 2001). The CR methods bypass
complex and poorly understood soil–plant interactions,
require fewer parameters for applications, and may be
more applicable to large areas where detailed data sets are
not available (Hobbins et al., 2001; Liang et al., 1994;
Morton, 1994; Silberstein, Sivapalan, & Wyllie, 1999;
Sugita, Usui, Tamagawa, & Kaihotsu, 2001; Xu & Singh,
1998). Dependent upon the data availability and the
modeling scale, either method may be used in large-scale
operational models.
Spatial variations of climate and landscape have

significant impacts on runoff modeling (Beven, 2000).
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Operational models should take advantage of available
databases of DEM, vegetation, soil, climate, and hydro-
graphy to account for spatial variations of climate, soil,
topography, and land use practices. Dependent upon the
purpose of the study and data availability, the study
watershed should be discretized into either grid network or
hydrologic response units (HRUs), large-scale operational
models applied to each cell or HRU, and output from each
cell routed to the watershed outlet for identifying and
understanding of both hydrologic responses and their
spatial distribution in the study watershed (Becker &
Braun, 1999; Karvonen, Koivusalo, Jauhiainen, Palko, &
Weppling, 1999).

2.3. Model calibration and uncertainty

Hydrologic models must be calibrated (model para-
meters estimated) to well represent reality, i.e. to match
observations with acceptable accuracy and precision
(Gupta, Sorooshian, & Yapo, 1998; Loagues & Kyriakis-
dis, 1997). Traditionally, hydrologic model calibration is
done with split-sample testing by using streamflow data to
find the ‘‘best’’ parameter set (Mroczkowski, Raper, &
Kuczera, 1997; Gupta et al., 1998). This approach is
practical, less data demanding, and easier to implement
than dealing with multiple-response data. Recently re-
searchers have explored different calibration approaches.
Mroczkowski et al. (1997) state that use of multiple-
response data (e.g. streamflow, soil moisture, and chemical
stream loads) in a watershed experiencing a change in
hydrologic regime gives a better assessment of the model
structure than the traditional split-sample testing using
streamflow data alone in undisturbed watersheds.
However, obtaining independent, multiple-response data
may be very difficult, particularly over large watersheds.
Others (Yan & Haan, 1991; Loagues & Kyriakisdis, 1997)
suggest use of a multiobjective approach in model
calibration for better assessment of the limitations of
model structure and confidence of model predictions when
multiple objectives cannot be easily transformed into a
single common objective due to a lack of quantitative
comparison measures. But nonlinearity in parameters
and multiple optima make calibration by multiple criteria
very difficult. A residual-based approach is likely to have
similar power but is easier to implement (Mroczkowski
et al., 1997).

The inherited uncertainties in model input data and
parameters affect model performance even after calibra-
tion. Inadequate consideration of the spatial variability of
precipitation data introduces greater uncertainty into
parameter estimates than errors in runoff data (Borah &
Haan, 1991; Chaubey, Haan, Grunwald, & Salisbury,
1999) and inaccuracies in DEM and the DEM-derived
drainage network affect estimates of runoff peaks, timing
and volume (Holmes, Chadwick, & Kyriakidis, 2000; and
Kenward, Lettenmaier, Wood, & Fielding, 2000). Merritt
et al. (2003) state that complex models (physically based

and conceptual models) are more vulnerable to problems
of parameter identifiability (behavior of the model not
observed in a particular sample of data or multiple
behavior types of the model cannot be differentiated by
the observed data). Gan, Dlamini, & Biftu (1997) evaluate
five conceptual rainfall-runoff models of different complex-
ity (ranging from 9 to 21 parameters) and report that
model performance is more associated with the model
structure, the objective function in calibration, and data
quality and less related to model complexity or calibration
data length. Some have investigated uncertainties of
hydrologic models by using methods such as Monte Carlo
based approaches and the mean-value first-order second-
moment method (Chaubey et al., 1999; Beven, 2000;
Muleta & Nicklow, 2005). Others state that performance
of the spatially distributed models can only be assessed
with spatially distributed observations that are technically
not feasible, especially over large areas (Merritt et al.,
2003). Considering the limitations of data, the criteria for
model acceptability need to be carefully defined, since if the
criteria are too strict, all models will be rejected (Beven,
2000).

2.4. GIS-model interface

Development of operational hydrologic models, parti-
cularly distributed hydrologic models, requires integration
of GIS, remote sensing, and other digital data bases for
extracting the needed model variables, and for processing,
analyzing, and visualizing the model results (He, 2003).
A number of GIS-model interfaces have been developed
to assist users in data organization, parameter extraction,
model execution, and output display, and to improve
model applicability. Such interfaces include linkages
between Geographic Resource Analysis and Support
System (GRASS) and AGNPS (Agricultural Nonpoint
Pollution Model) (He et al., 1993), and Arc/Info and
HEC-HMS (Hydrologic Modeling System) (Hellweger &
Maidment, 1999). He, Shi, Yang, & Agosti (2001)
developed an interface to integrate the ArcView GIS and
AGNPS for modeling and analysis of agricultural water-
sheds. A software package, Real-time Interactive Basin
Simulator (RIBS) by Garrote & Bras (1995) integrates a
radar-based rainfall prediction model, a DEM-based rain-
fall-runoff model, and other multiple databases to forecast
real-time flooding. Since the 1990s, the US Environmental
Protection Agency (2001) has developed and updated
Better Assessment Science Integrating Point and Nonpoint
Sources (BASINS) system to incorporate ArcView GIS
and hydrologic models in support of water quality
programs nationwide. To better represent hydrologic
processes and facilitate model implementation and applic-
ability, operational hydrologic models should incorporate
linkages or interfaces to GIS for data integration, analysis
and visualization.
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3. Analysis of spatially distributed large basin runoff model

The Laurentian Great Lakes are the largest surface
freshwater system in the world and are vital to the
economic prosperity of both the US and Canada. This
interconnected system supports multiple water uses that
include navigation, hydropower generation, agricultural
production, urban development, tourism and recreation,
and fishery and wildlife habitat in the region (He, 1997). To
make sustainable use of this precious fresh water system, a
large-scale operational hydrologic model, the Large Basin
Runoff Model (LBRM) has been developed since the 1980s
to support water resource decision-making (Croley, 2002).
However, the LBRM is a lumped (1-D), conceptual
parameter model. Even though able to simulate integrated
hydrologic responses at the watershed outlet and having
been successfully applied to each of the 121 watersheds in
the Great Lakes Basin for multiple water resources
applications since the 1980s, it does not take into account
spatial heterogeneity and thus is unable to simulate the
spatial response to hydrologic events. To overcome this
limitation, the lumped LBRM is modified into a spatially
distributed LBRM (DLBRM) to help researchers and
resource planners to better understand the spatial distribu-
tion of hydrologic processes and their response. The
following sections briefly describe the structure, input,
calibration, and GIS interface of the DLBRM.

3.1. Lumped LBRM

The LBRM (lumped 1-D) was developed by the
National Oceanic and Atmospheric Administration
(NOAA)’s Great Lakes Environmental Research Labora-
tory (GLERL) in the 1980s to support hydrologic
simulations and water resources applications in the Great
Lakes Basin. It uses a serial and parallel cascade of linear
reservoirs (outflows proportional to storage) to represent
moisture storages within a watershed: surface, upper soil
zone (USZ), lower soil zone (LSZ), and groundwater zone
(GZ) (Croley & He, 2005). The model computes the total
heat available each day, indexed by daily air temperature,
to become potential evapotranspiration (ETP) or actual
evapotranspiration (ET), a complementary approach. It
splits the heat available between ETP and ET, by
preserving the total heat and taking ET as proportional
to both ETP and storage. The model uses variable-area
infiltration (infiltration proportional to the unsaturated
fraction of USZ) and daily precipitation and degree-day
snowmelt (Croley, 2002). It has been applied extensively to
the 121 riverine watersheds draining into the Laurentian
Great Lakes for use in both simulation and forecasting
(Croley, Quinn, Kunkel, & Changnon, 1998; Croley & He,
2005). The LBRM uses readily available climatological
data, requires few parameters and data, uses mass
continuity equations to govern the water storages in
each storage zone, and is generally applicable to large
watersheds (Croley, 2002). However, it does not consider

spatial distribution of hydrologic responses and thus
limits its applications in water resources operations and
management.
Recently, the LBRM was modified from its aggregated-

parameter definition for an entire watershed to a two
dimensional representation of the 1-km2 flow cells com-
prising the watershed (Croley & He, 2005, 2006). The
structure, input, calibration, and GIS-interface of the
DLBRM are briefly described below.

3.2. Model structure

The structure of the DLBRM is shown in Fig. 1. The
continuity equations of the LBRM were modified to allow
upstream surface and subsurface routing between cells of
flows of the surface zone, the USZ, the LSZ, and the GZ.
This enables surface and subsurface storages to interact
both with each other and with adjacent-cell surface and
subsurface storages. The watershed is discretized into a
grid network of 1 km2 cells. Since ET and potential ET
cannot be regarded as complementary when the DLBRM
is applied to a small cell, both are replaced with the more
traditional ‘‘independent’’ concept (that actual ET does not
affect potential ET) in the DLBRM. A flow network is
generated by identifying the network flow cascade of the
watershed cells based on the slope, flow directions, and
receiving cell numbers (the cell that receives the upper
stream flow) derived by the GIS interface. A flow
hydrograph out of a cell is saved as a ‘‘pending’’ inflow
hydrograph into the next downstream cell, until all
upstream inflows for that next cell are computed; then
these flows are added together to determine the total
upstream surface flow into that next cell [details of the
DLBRM are described by Croley and He (2005, 2006)].

3.3. Model input and output

Input variables to the DLBRM include, for every cell in
the watershed grid, daily precipitation and air temperature,
solar isolation, elevation, slope, flow direction, land use,
depths (cm) of USZ and LSZ, available water capacity (%)
of USZ and LSZ, soil texture, permeability (cm/h) of USZ
and LSZ, Manning’s coefficient values, and daily flows (see
Tables 1 and 2). Precipitation and temperature are
interpolated from more than 1800 historical climatological
site records in the Great Lakes Basin by using one of
several methods including: Thiessen polygon, inverse
distance, inverse squared-distance, and linear interpolation
over a triangular irregular network (TIN). Daily surface
insolation estimates are generated by two methods: (1)
from temperature databases by empirical formulae, and (2)
reversed-engineered from an available weather generation
model as a function of location, day of the year, air
temperature and precipitation (Croley & He, 2005). Slope
and flow direction are extracted from digital elevation
model (DEM) databases. USZ and LSZ depths, available
water capacity, permeability, and soil texture are derived
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from STATSGO (US Department of Agriculture, 1994).
Manning’s coefficient values are derived for each grid
based on the combination of land use, slope, and soil
texture.

DLBRM output includes, for every cell in the watershed
grid, surface runoff to surface storage, infiltration to USZ,
ET, ETP, percolation from USZ to LSZ, interflow from
LSZ to surface storage, deep percolation from LSZ to
groundwater storage, groundwater flow from groundwater
storage to surface storage, surface moisture storage, USZ,
and LSZ moisture storages, groundwater storage, and
lateral flows from storages to adjacent cells for the surface
(channel outflow), USZ, LSZ, and groundwater. Currently,
daily precipitation and air temperature and solar insolation
to the DLBRM still rely on measurements from ground-
based weather stations. Once the daily, areal coverage of
snow pack, rainfall, and solar radiation (from remote

sensing sensors such as NOAA, GOES, and other EOS
satellites) become available on a routine basis, the
DLBRM can be modified to utilize these estimates to
simulate rainfall-runoff for the Great Lakes Basin. Such
addition will lead to better representation of the spatial
distribution of net supply to the model and hence
significantly improve the accuracy of the runoff simulation.

3.4. Model calibration

Availability of detailed observation data may be more
important than more complex calibration methods. Muleta
and Nicklow (2005) applied a hierarchy of three techniques
(screening, parameterization, and sensitivity analysis) in
calibrating soil and water assessment tool (SWAT) (35
parameters) but the simulated streamflow and sediment
concentrations showed large discrepancies compared to
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observations at the outlet. They attribute the discrepancies
to the lack of detailed observations in the study watersheds.
Considering the availability of hydrologic data, computa-
tion time, and long term simulation period (multiple
decades) over large-scale watersheds, calibration of the
DLBRM is conducted as a systematic search of the
parameter space to minimize the root mean square errors
(RMSE) between actual and simulated daily outflow
volumes at the watershed outlet (note: two other indices:
correlation coefficient and the coefficient of efficiency or
Nash–Sutcliffe coefficient are also available for use in the
DLBRM automatic calibration program).

There are 15 parameters in the model: degree-day
snowmelt coefficient, heat-temperature index coefficient,
USZ capacity, partial linear reservoir coefficients for
surface zone evaporation, USZ ET, LSZ ET, and GZ
ET, linear reservoir coefficients for percolation, interflow,
deep percolation, groundwater flow, and lateral down-
stream surface flows, lateral downstream USZ flows,
lateral downstream LSZ flows, and lateral downstream
groundwater flows. While parameters describing the
degree-day snowmelt and heat-temperature index were
taken as spatially constant, and while surface and ground-
water evaporation were taken as zero, the spatial structures

of other parameters were assigned as follows. The
coefficients for percolation, lateral downstream USZ flow,
and USZ ET were taken proportional to observed USZ
permeability; the USZ capacity was taken proportional to
observed USZ available water capacity; the coefficients for
interflow, deep percolation, lateral downstream LSZ flow,
LSZ ET, groundwater flow, and lateral downstream
groundwater flow, were taken proportional to observed
LSZ permeability; the coefficient for lateral downstream
surface flow was taken proportional to the square root of
surface slope divided by Manning’s coefficient.
While spatial variation in each of the parameters was

described as above, the spatial average of each parameter
was determined by minimizing the RMSE between model
and observed watershed outflow through a systematic
search of the 15-parameter space.

3.5. GIS interface

DLBRM use requires the watershed be discretized into a
grid network at a resolution of 1 km2 (to match existing
areal coverage of meteorological data) or other sizes as
specified by a user. It requires 15 input variables for each of
the grid cells. To facilitate the implementation of the
DLBRM, a GIS interface, the AVDLBRM (ArcView
Distributed Large Basin Runoff Model) interface based on
the work of He et al. (2001), has been developed for
processing, extracting, analyzing, and visualizing model
input and output. The interface consists of six modules: a
soil processor, DLBRM utility, parameter generator,
output visualizer, statistical analyzer, and land use
simulator.
The soil database processor automatically derives, from

STATSGO, spatially averaged depth, available water
capacity (AWC), soil texture, soil slope, and permeability
for the USZ (layer 1 in STATSGO) and LSZ (layers 2–6 in
STATSGO) by soil association (soil association is a unit on
which soil information is mapped and assembled). The
parameter generator module helps a user first set up input
files of DEM, land use, soil, and hydrography, and then
derives required input parameters of slope, receiving cell
numbers, flow direction, depths of USZ and LSZ, AWC of
USZ and LSZ, permeability of USZ and LSZ, soil texture,
and elevation for each grid cell. As the flow net allows only
one outlet for the entire study watershed, flow directions
must be carefully inspected to eliminate any flow loops. A
DLBRM utility module in the AVDLBRM is used to
check such errors and allows the user to edit flow direction
either one cell at a time or by several cells at a time (He,
2003). The verified flow net is then used to route flow
(Croley & He, 2005).
To derive appropriate Manning’s coefficient values for

each grid cell, the interface first helps the user define the
hydrologic response units (HRUs) based on combinations
of land use, slope, and soil texture (i.e. dividing the
watershed into different HRUs) for the entire watershed
and then uses a look-up table to assign each HRU an
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Table 1

Input variables for the DLBRM

Variables Databases

Elevation USGS digital elevation model

(DEM)a

Flow direction USGS DEM

Slope USGS DEM

Land use USGS land use databaseb

Depth of upper soil zone (USZ) USDA STATSGOc

Depth of lower soil zone (LSZ) USDA STATSGO

Available water capacity (%) of

USZ

USDA STATSGO

Available water capacity of LSZ USDA STATSGO

Permeability of USZ USDA STATSGO

Permeability of LSZ USDA STATSGO

Soil texture USDA STATSGO

Manning’s coefficient value Land use, slope, and soil texture

Sources:
aUS Geological Survey National Elevation Dataset (NED) http://

seamless.usgs.gov/.
bUS Geological Survey National Landcover Characterization Dataset

(NLCD) 1992, http://seamless.usgs.gov/.
cUS Department of Agriculture 1994. http://soils.usda.gov.

Table 2

Time series meteorological and flow variables for the DLBRM

Variables Databases

Daily precipitation National weather service climate databases

Daily air temperature National weather service climate databases

Daily solar isolation National weather service climate atlas

Daily flows USGS discharge database
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appropriate Manning’s coefficient value automatically.
These values are mainly determined by land use/cover
categories and then adjusted by slope and soil texture.
Subsequently, the interface assigns values from each of
HRU to each grid cell.

The output visualizer allows the user to select any
variable from the output file and display it in map format
in ArcView. A separate animation program has also been
developed to animate the output variables for multiple
years at daily intervals, which enables examination of
dynamics of hydrologic variables over the long term. The
statistical analyzer enables the user to conduct an analysis
of variance (ANOVA) to examine relations between land
use/cover and simulated results. The land use change
simulator allows the user to specify land use change
scenarios in a sub-basin or specific area based on the land
use/cover file and evaluate the hydrologic impact of such
changes to the downstream area (He, 2003).

Compared to the lumped parameter LBRM, the DLBRM
has the following improvements: (1) two-dimensional
representation of the 1-km2 flow cells comprising the
watershed; (2) consideration of spatial variation of climate,
soil, topography, and land use in simulating watershed
hydrologic processes; (3) incorporation of impacts of upper
stream landscape heterogeneity to downstream hydrologic
responses by routing flows from USZ, LSZ, GZ, and surface
storages downstream; and (4) better representation of the
watershed hydrologic system over the large scale. Moreover,
the continuity equations in DLBRM are solved analytically,
thus minimizing computational errors and enabling the
tracking of hydrologic processes. Furthermore, the repre-
sentation of the watershed system by parallel cascades of
linear reservoirs makes the DLBRM less data demanding
and suitable for large watershed applications.

4. A DLBRM application example

The DLBRM has been applied to 18 watersheds with
drainage areas ranging from 3000 to over 24,000 km2 in the
Great Lakes Basin. This section describes its application to
the Kalamazoo River Watershed (drainage area of
approximately 5612 km2) in southwest Michigan of the
US. The watershed was discretized into a grid network of
5612 cells at 1 km2 resolution. A DEM from the USGS
(http://seamless.usgs.gov/) was used to derive topographi-
cally related parameters (flow direction, receiving cell
number, and slope) by the AVDLBRM interface. The

land cover data from the 1992 USGS National Land cover
Characterization Data set (NLCD) (http://seamless.usgs.
gov/) was used to derive a land cover category (code) for
each grid cell. The STATSGO dataset was used to derive
depth (cm), AWC (cm), soil texture, and permeability (cm/h)
for the USZ and LSZ for each of the cells. Manning’s
coefficients were assigned to each cell by the HRUs by the
AVDLRBM interface. Average daily river flow rates from
the USGS were converted into daily outflow volumes and
were used to conduct a systematic search of the parameter
space to minimize the RMSE between actual and simulated
daily outflow volumes at the watershed outlet (Croley, He,
& Lee, 2005).
The DLBRM was calibrated over the period of

1950–1964 for each of the 5612 cells (1-km2) at a daily
interval. The calibration took over a week on a desktop
personal computer (Intel XeonTM processor @ 2.40GHz).
The calibration shows a 0.88 correlation between simulated
and observed watershed outflows (0.77 coefficient of
determination), a 0.020 cm/d RMSE (0.57 RMSE divided
by standard deviation), and a coefficient of variation of
0.24. Over a separate verification period (1965–1990), the
model demonstrated a 0.81 correlation between simulated
and observed watershed outflows (0.66 coefficient of
determination), a 0.028 cm/d RMSE (0.58 RMSE divided
by standard deviation), and a coefficient of variation of
0.50. Comparison of the lumped parameter LBRM and
distributed parameter DLBRM calibration statistics for the
period of 1950–1964 shows that both models show very
similar ratios of model to actual flow means and very
similar long-term average ratios to surface supply of
surface runoff, interflow, groundwater flow, USZ ET,
and LSZ ET even though the DLBRM has a slightly higher
RMSE than the lumped LBRM. The slightly higher RMSE
in DLRBM is expected since spatial landscape hetero-
geneity of the watershed (Table 3) and spatial meteorology
over the watershed is estimated more poorly than spatially
average values. Spatial landscape data exist at multiple
spatial resolutions. Soil related input variables are derived
from STATSGO, assuming uniform distribution of the
variables within each soil association. Topographic vari-
ables such as slope and flow direction are extracted from
the DEM (1:250,000 scale) and then aggregated to the
1 km2 cell by selecting dominant values. This aggregation
process inevitably generates errors into the hydrologic
models like DLBRM (Holmes et al., 2000 and Kenward
et al., 2000). Daily precipitation and temperature input to
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Table 3

Comparison of selected summary statistics for lumped-parameter LBRM and distributed LBRM calibration in the kalamazoo river watershed

Calibration period

1950–1964

Correlation RMSE (cm) Long term average ratio to surface supply

Model

outflow

Surface

runoff

Interflow Groundwater

flow

Upper zone

ET

Lower zone

ET

Lumped 0.895 0.0184 1.005 0.068 0.032 0.246 0.574 0.074

Distributed 0.880 0.0217 1.004 0.061 0.072 0.222 0.578 0.072
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the DLBRM are spatially interpolated (using Thiessen
polygon, inverse distance, and inverse squared-distance
methods) from a network of over 1800 weather stations in
the Great Lakes Basin, corresponding to about 290 km2/
station. Such lack of detailed spatial representation of
meteorological data leads to large uncertainties in para-
meter estimates and hence model output (Chaubey et al.,
1999; Vachaud & Chen, 2002).

Comparison of hydrographs for the period of 1950–1952
shows overall good agreement (Fig. 2). The water balance
shows an absence of storage in the lower soil zone,
implying that the groundwater zone receives its input
directly from the upper soil zone. The base flow seems well
represented but several peak flows are under-estimated.
Fig. 3 also shows surface runoff flows out of the USZ into
the surface zone, groundwater flows from the GZ to the

ARTICLE IN PRESS

Fig. 2. Comparison of simulated river outflows with actual Kalamazoo River outflows for the period of 1950–1952.

Fig. 3. Distributed large basin runoff model output for the Kalamazoo river watershed for the period of June 2–8, 1950.
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surface, and outflow flows from the surface zone for the
period of June 2–8, 1950. These flows represent the
moisture storages within the watershed. The first flow is a
within-the-cell flow while the last two cross cell boundaries
and are accumulated down the flow network, reaching
much larger values than within-the-cell flows. The general
behavior of the watershed is depicted in this example. The
supply on the first day results in a very flashy response in
the upper soil zone, which is reflected by the immediate
response in surface runoff. The groundwater zone is little
affected and the groundwater flow is nearly constant
throughout the period. The surface response lies in
between; the outflow network is more dense at the
beginning than at the end as water flows through the
network throughout the period (Croley & He, 2005).
The results of the DLRBM simulations show that the
Kalamazoo River response to precipitation is dominated
by groundwater storage, allowing delayed and sustained
hydrologic responses to rainfall. These results are char-
acteristic of the study watershed and are in agreement with
other hydrologic studies of the Kalamazoo River such as
Allen, Miller, and Wood (1972). The under-estimated peak
flows probably result from poor estimation of ‘‘observed.’’
The most downstream gauge station used in the calibration
(USGS 04108500) has a drainage area of 4142 km2

extrapolated to 5612 km2 at the watershed outlet, which
tends to impart a flashier response than actually exists at
the watershed outlet.

These comparisons indicate that the DLBRM has indeed
improved watershed representation and produced realistic
simulations of hydrologic responses in the study watershed
(Croley & He, 2005, 2006).

5. Summary

Through application of the DLBRM in the Great Lakes
Basin, this paper discusses issues related to model structure,
input, calibration, and GIS interface in large-scale hydro-
logic modeling. Both calibration and verification statistics
for the DLBRM application to the Kalamazoo River
watershed show good agreement between the model and
observations. The results indicate that conceptual hydro-
logic models such as the DLBRM that are based on mass
continuity equations and include surface, soil zones, and
groundwater components, use fewer parameters, demand
less data, require less computations, and better simulate
large-scale hydrologic systems over the long-term than
other models. Use of GIS is crucial in deriving input
variables for each of the grid cells from the existing, readily
available multiple digital databases and for facilitating and
improving model implementation and application. While
routing simulated flow downstream, considering surface
and subsurface flow interactions between adjacent cells is
essential for more accurate representation of the hydrologic
processes. Calibration of the distributed hydrologic models
at the watershed outlet, while less desirable, is reasonable

and practical due to lack of detailed spatially distributed
observations across the study watershed.
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